Green and Sustainable Mining: Underground Coal Mine Fully Mechanized Solid Dense Stowing-Mining Method
نویسندگان
چکیده
China produces and consumes most of coal in the world. This situation is expected to continue within a certain period in the future. Currently, Chinese coal industry is confronted with several serious problems relating to land resource, water resource, environmental, and ecological sustainability. Coal resource exploitation causes the permanent fracture and movement of strata structure, which have caused the fracture and collapse of overlying strata and further led to the subsidence of ground surface as well as the seepage of water in aquifers around the coal seam, which has resulted not only in the loss of land and water resources, but also in serious threats and accidents to underground mining. On the other hand, mining and mineral-processing wastes are one of the world’s long plagued concerns among solid wastes. Coal gangue, as the major waste with a huge amount of discharge, has not only occupied the land, but has also contaminated the ambient land resources and hydrological environment, and further led to ecological system destruction and degradation. What is more, in China there are large amounts of coal—located under railways, buildings, and water bodies—which are unavailable with traditional mining methods. These problems are obviously threaten the concept of green sustainable development. This paper introduces a novel developed solid dense stowing mining method, which is able to significantly reduce or event eliminate the corresponding damages caused by underground mining behavior and realize green and sustainable development. The novelty of this research work is realizing the automation and synchronization of mining and material stowing with an appropriate compaction ratio for adequate support of goaf roof. It can improve the stability of rock strata and the safety and efficiency of underground mining. We also studied and designed a perfect stowing material by using coal gangue and fly ash with appropriate proportions under different particle size gradations. By implementation of the above-mentioned methods in China, the solid dense stowing rate of mined seam areas have reached more than 95% and the overburden strata movements have been reduced to extremely low level which had nearly no damages to above buildings. The solid dense stowing mining method has also realized the reuse and recycling of coal mine solid wastes. Meanwhile, considerable previously unavailable coal resources under buildings, railways, and water bodies have been made available for exploration, which could extend the life of coal mines and increase the sustainability for coal industry and the environment. Ultimately, this method is a reliable way to realize green and sustainable mining. The strata structure protection, the surface subsidence prevention, and coal mine solid waste disposal have been realized at the same time.
منابع مشابه
Determination of a suitable extraction equipment in mechanized longwall mining in steeply inclined coal seams using fuzzy analytical hierarchy method (Case study: Hamkar coal mine, Iran)
The longwall mining method is one of the most applied methods in extracting low-inclined to high-inclined coal seams. Selection of the most suitable extraction equipment is very important in the economical, safety, and productivity aspects of mining operations. There are a lot of parameters affecting the selection of an extraction equipment in mechanized longwall mining in steeply inclined coal...
متن کاملStructural analysis of impacting factors of sustainable development in underground coal mining using DEMATEL method
Mining can become more sustainable by developing and integrating economic, environmental, and social components. Among the mining industries, coal mining requires paying a serious attention to the aspects of sustainable development. Therefore, in this work, we investigate the impacting factors involved in the sustainable development of underground coal mining from the structural viewpoint. For ...
متن کاملDevelopment and Demonstration of High Concentration Fill Technology on Utilization of Fly Ash as a Filling Material for Underground Coal Mines
A relatively new technology, high concentration backfilling, enables mining industry to think on the use of fly ash as underground back fill material. The advantages are enormous. Jharia and Ranigunj coalfields being the oldest in the country had adopted unscientific mining during pre-nationalization period. In many cases mining was conducted without proper stowing and that had resulted in seve...
متن کاملApplication of cut set method to reliability evaluation of mine ventilation networks
Providing a fresh and cool airflow in underground mines is one of the main concerns during mining. Destruction of support systems, the presence of undesirable objects in the airway and distortion of airflow are the parameters involved that would result in pressure loss, which would affect the ventilation network. There are a lot of research works about the ventilation network planning that cons...
متن کاملApplication of an integrated decision-making approach based on FDAHP and PROMETHEE for selection of optimal coal seam for mechanization; A case study of the Tazareh coal mine complex, Iran
Increasing the production rate and minimizing the related costs, while optimizing the safety measures, are nowadays’ most important tasks in the mining industry. To these ends, mechanization of mines could be applied, which can result in significant cost reductions and higher levels of profitability for underground mines. The potential of a coal mine mechanization depends on some important fact...
متن کامل